DNA repair prognostic index modelling reveals an essential role for base excision repair in influencing clinical outcomes in ER negative and triple negative breast cancers
نویسندگان
چکیده
Stratification of oestrogen receptor (ER) negative and triple negative breast cancers (TNBCs) is urgently needed. In the current study, a cohort of 880 ER- (including 635 TNBCs) was immuno-profiled for a panel of DNA repair proteins including: Pol β, FEN1, APE1, XRCC1, SMUG1, PARP1, BRCA1, ATR, ATM, DNA-PKcs, Chk1, Chk2, p53, and TOPO2. Multivariate Cox proportional hazards models (with backward stepwise exclusion of these factors, using a criterion of p < 0.05 for retention of factors in the model) were used to identify factors that were independently associated with clinical outcomes. XRCC1 (p = 0.002), pol β (p = 0.032) FEN1 (p = 0.001) and BRCA1 (p = 0.040) levels were independently associated with poor BCSS. Subsequently, DNA repair index prognostic (DRPI) scores for breast cancer specific survival (BCSS) were calculated and two prognostic groups (DRPI-PGs) were identified. Patients in prognostic group 2 (DRPI-PG2) have higher risk of death (p < 0.001). Furthermore, in DRPI-PG2 patients, exposure to anthracycline reduced the risk of death [(HR (95% CI) = 0.79 (0.64-0.98), p = 0.032) by 21-26%. In addition, DRPI-PG2 patients have adverse clinicopathological features including higher grade, lympho-vascular invasion, Her-2 positive phenotype, compared to those in DRPI-PG1 (p < 0.01). Receiver operating characteristic (ROC) curves indicated that the DRPI outperformed the currently used prognostic factors and adding DRPI to lymph node stage significantly improved their performance as a predictor for BCSS [p < 0.00001, area under curve (AUC) = 0.70]. BER strongly influences pathogenesis of ER- and TNBCs. The DRPI accurately predicts BCSS and can also serve as a valuable prognostic and predictive tool for TNBCs.
منابع مشابه
Expression of genes involved in DNA repair and cell cycle checkpoint pathways in Triple Negative compared to Luminal A Breast Cancer: a molecular characterization
Purpose Considering the clear emerging role of the DNA repair and the cell cycle checkpoints as predictive, prognostic and therapeutic targets in cancer there is a need to better characterized human tumours to define sub-sets of patients that would benefit of a particular treatment modality. The aim of the present work is to characterize molecularly a cohort of Triple Negative Breast Cancers (T...
متن کاملTriple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes
DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compar...
متن کاملIs There a Role for Base Excision Repair in Estrogen/Estrogen Receptor-Driven Breast Cancers?
Estrogen and estrogen metabolite-induced reactive oxygen species generation can promote oxidative DNA base damage. If unrepaired, base damaging lesions could accelerate mutagenesis, leading to a "mutator phenotype" characterized by aggressive behavior in estrogen-estrogen receptor (ER)-driven breast cancer. To test this hypothesis, we investigated 1406 ER(+) early-stage breast cancers with 20 y...
متن کاملDefective repair of oxidative dna damage in triple-negative breast cancer confers sensitivity to inhibition of poly(ADP-ribose) polymerase.
Subtypes of breast cancer that represent the two major types of epithelial cells in the breast (luminal and basal) carry distinct histopathologic profiles. Breast cancers of the basal-like subtype, which include the majority of hereditary breast cancers due to mutations in the breast cancer susceptibility gene 1 (BRCA1), frequently assume triple-negative status, i.e., they lack expression of es...
متن کاملPARP inhibitors: its role in treatment of cancer
PARP is an important protein in DNA repair pathways especially the base excision repair (BER). BER is involved in DNA repair of single strand breaks (SSBs). If BER is impaired, inhibiting poly(ADP-ribose) polymerase (PARP), SSBs accumulate and become double stand breaks (DSBs). The cells with increasing number of DSBs become more dependent on other repair pathways, mainly the homologous recombi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015